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Abstract: We present a general approach for quantifying tolerance of a nonlocal N-partite state to
any local noise under different classes of quantum correlation scenarios with arbitrary numbers of
settings and outcomes at each site. This allows us to derive new precise bounds in d and N on noise
tolerances for: (i) an arbitrary nonlocal N-qudit state; (ii) the N-qudit Greenberger–Horne–Zeilinger
(GHZ) state; (iii) the N-qubit W state and the N-qubit Dicke states, and to analyse asymptotics of
these precise bounds for large N and d.
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1. Introduction

Nonlocality [1–3] of an N-qudit quantum state, in the sense of its violation of a Bell inequality, is a
major resource for developing quantum information technologies. Conceptual and quantitative issues
of Bell nonlocality in a general nonsignaling case have been analyzed in [4] and references therein.
The main concepts and tools that were developed to describe and to study Bell nonlocality in a
quantum case have been reviewed in [5]. (We further discuss only the notions of Bell nonlocality and
locality and, therefore, mostly suppress the specification “Bell” before these terms.)

In quantum information applications, one, however, deals with noisy channels and, for a nonlocal
N-qudit state ρd,N , d ≥ 2, N ≥ 2, it is important to evaluate amounts of noise not breaking the
nonclassical character of its statistical correlations. Analytical and numerical bounds on the critical
visibility of a nonlocal N-qudit state ρd,N in a mixture with white noise:

(1 − β)
I
⊗N

dN + βρd,N , β ∈ [0, 1], (1)

have been intensively studied in the literature: (i) for a nonlocal two-qudit state—in [6–10]
and references therein; (ii) for some specific quantum correlation scenarios and specific N-qubit
states—in [11–19]; and (iii) for an arbitrary nonlocal N-qudit state ρd,N , N ≥ 3, d ≥ 3—in [20].

However, precise analytical bounds on the critical visibility of a nonlocal N-qudit state ρd,N in
a mixture

(1 − β) ζloc + βρd,N , β ∈ [0, 1], (2)

with an arbitrary local noise (i.e. a noise described by a local N-qudit state ζloc) and, more generally,
bounds on the tolerance of a nonlocal N-qudit state ρd,N to any local noise are not, to our knowledge,
known in a general N-qudit case, though, for a nonlocal family of joint probabilities under a bipartite
(N = 2) correlation scenario, the similar concept—the resistance to noise—was introduced in [21] and
further discussed in [5]. For the rigorous definition of the notion of the tolerance of a nonlocal state see
Section 4.
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We note that, for many quantum information applications based on Bell nonlocality, it is important
to evaluate the maximal amount of noise tolerable by a nonlocal N-qudit state and this amount is
determined specifically via the noise tolerance of a nonlocal state.

In the present paper, due to the general framework for Bell nonlocality developed in [4,22,23],
we present a consistent approach to quantifying tolerance of a nonlocal N-partite quantum state to any
local noise under different classes of quantum correlation scenarios with arbitrary numbers of settings
and any spectral types of outcomes at each site. This allows us:

• to specify via parameters of an N-partite state the general analytical expressions for the noise
tolerance of a nonlocal N-partite state (i) under S1 × · · · × SN-setting quantum correlation
scenarios with any number of outcomes at each site and (ii) under all quantum correlation
scenarios with arbitrary numbers of settings and outcomes per site;

• to derive new precise lower/upper bounds in d and N on the noise tolerances and the maximal
amounts of tolerable local noise for: (i) an arbitrary nonlocal N-qudit state; (ii) the N-qudit
Greenberger-Horne-Zeilinger (GHZ) state; (iii) the N-qubit W state and the N-qubit Dicke states
and to analyse asymptotics of these precise new bounds for large N and d.

2. General N-Partite Bell Inequalities

Let us shortly recall the notion of a general multipartite Bell inequality [24] with arbitrary numbers
of settings and outcomes per site. For the general framework on the probabilistic description of an
arbitrary multipartite correlation scenario with any number of settings and any spectral type of
outcomes at each site, see [25].

Consider a correlation scenario, where each n-th of N parties performs Sn ≥ 1 measurements with
outcomes λn ∈ [−1, 1] and every measurement at n-th site is specified by a positive integer sn = 1, ..., Sn.
For concreteness, we label an S1 × · · · × SN-setting scenario by ES, where S = S1 × · · · × SN .

For a correlation scenario ES, denote by P(ES)
(s1,...,sN)

the joint probability distribution of outcomes

(λ1, . . . , λN) ∈ [−1, 1]N under an N-partite joint measurement induced by measurements s1, ..., sN at
the corresponding sites and by

B(ES)
ΦS

= ∑
s1,...,sN

〈
f(s1,...,sN)(λ1, . . . , λN)

〉
ES

, (3)

ΦS = { f(s1,...,sN) : [−1, 1]N → R | sn = 1, ..., Sn, n = 1, ..., N},

a linear combination of averages (expectations)

〈
f(s1,...,sN)(λ1, . . . , λN)

〉
ES

(4)

=
∫

[−1,1]N

f(s1,...,sN)(λ1, . . . , λN)P(ES)
(s1,...,sN)

(dλ1 × · · · × dλN)

of the most general form, specified for each N-partite joint measurement (s1, ..., sN) by a bounded
real-valued function f(s1,...,sN) of outcomes (λ1, . . . , λN) ∈ [−1, 1]N at all N sites. Each linear
combination (3) is specified by a family ΦS = { f(s1,...,sN)} of these functions.

Depending on a choice of a function fs1,...,sN , an average (4) may refer either to the joint probability
of events observed under this joint measurement at M ≤ N sites or to the expectation

〈
λ
(s1)
1 · . . . · λ

(snM )
nM

〉
ES

=
∫

[−1,1]N

λ1 · . . . · λnM P(ES)
(s1,...,sN)

(dλ1 × · · · × dλN) (5)

of the product of outcomes observed at M ≤ N sites or may have a more complicated form. In quantum
information, the product expectation (5) is referred to as a correlation function.


